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It is shown that the tension of solutions in the case of large elastic strains 
can be described by means of rheological equations for cross-linked rubber. 

In [1-3, 6] the hypothesis was advanced that the strain orientation caused by large 
elastic strains which occur in the flow of viscoelastic liquids results in loss of fluidity 
by the liquids, which henceforth behave in a manner similar to a purely elastic medium. 
Using this hypothesis as a basis, below we examine the following phenomena: stretching of 
a stream of viscoelastic liquid from a container with i) a free surface; 2) an open siphon. 

The first phenomenon was initially studied in [4, 5], where certain suction devices 
were used to stretch-form a polymer stream from a tank. Similar experiments were conducted 
in [6] with a solution of polyethylene oxide (PEO), mainly of 0.5% concentration. However, 
here the liquid was withdrawn from a vessel by means of a rotating drum. A diagram of this 
experiment is shown in Fig. i. In the case of the 0.5% solution of PEO, the maximum (New- 
tonian) viscosity of which at 22~ was q ~ 0.15 Pa~ and the relaxation time e ~ 0.7 sec 
(evaluated from dynamic tests in the linear strain region), the length of the steadily 
stretched stream reached 0.5 m. 

It is curious to note that a 40% solution of butyl rubber in transformer oil for which 
~ 103 Pa,sec and e ~ 1 sec cannot be stretched by the above method, 

Steady-state flow of a PEO solution with a strain rate decreasing along the stream can 
be realized only within a limited range of flow rates q. These flow rates are completely 
determined by the profile of the stream, i.e., by the dependence of the stream radius on the 
longitudinal coordinate (Fig. 2). The stream ruptures at low flow rates. At high flow 
rates, it becomes asymmetrical and the flow rate begins to fluctuate, It is also important 
to note that the velocity of the liquid stream near the rotating drum is generally lower 
than the drum speed, i.e., the stream slips relative to the drum. 

The open siphon phenomenon [7] consists of the fact that a stream of polymer solution, 
under the influence of its own weight, will pull the remaining solution from a previously 
inclined vessel. One of the possible schemes of elastic siphoning is depicted in Fig. 4 
and discussed below. 

Drawing a Viscoelastic Liquid with a Free Surface from a Vessel. The following three 
regions of deformation can be distinguished in the steady-state stretching of a viscoelas- 
tic stream with a free surface (Fig. i): I) region of nearly uniform tension, where the 
stream radius changes little along the z axis (dr/dz <<i); II) region close to the free sur- 
face, where the flow is not one-dimensional and the stream radius undergoes a sharp change; 
III) region under the free surface, where the flow is evidently close to radial. 

In region I, the steady-state equations of conservation of mass and momentum~ averaged 
over the stream cross section, have the form 

Sv = q = const ,  ( l )  

d (oS) = pgS - -  2 V ~ *  dS~/2 
d-~" d z  ' (2) 

where 0 = const; the z axis, which originates at the level of the free surface, is directed 
along the stream. Equation (2) is written in a noninertial approximation, which is accep- 
table if the following inequality is observed: 
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Fig. I. Diagram of withdrawal of a polymer solution from a container with a 
free surface using a rotating drum: i) solution stream being withdrawn; 2) 
rotating drum; 3) stream flowing off drum; 4) scraper; I, II, III) regions of 
deformation of solution. 

Fig. 2. Theoretical (curves) and experimental (points) dependence of stream 
radius r (mm) on longitudinal coordinate z (cm) for a 0.5% water solution of 
polyoxyethylene: 1-5) q = 1.14, 0.58, 0.36, 0.17, and 0.09 cma.sec -I, respec- 
tively. 

do 
pq -~g << pgS. (3) 

Let us assume that the behavior of the solution in region I of stream flow is similar 
to that of cross-linked rubber [i, 2]. In this case, the components of the elastic strain 

tensor X have the form: x = = x ,  x ~ = x ~ - - - - x  -J/~ . 

Let us also assume that x >> Xcr >> i, where Xcr is the critical value of elastic strain 
at which the solution loses fluidity. Then, allowing for the effect of surface tension on 
isotropic pressure, the stress a, averaged over the cross section of the stream, can be 

written in the form 

4~ a* ( d2r ) 
o =  x ~ - -  1 - - r  . (4) 

fl r ~ d z  2 

The first term in Eq. (4) corresponds to the simplified two-parameter BST potential [8] 

J 

W = 2 n  S p ( x  ~ - 6 ) ,  

which is convenient for approximating empirical data. It should also be noted that Eq. (4) 
may also contain the term 3~dv/dz, describing the phenomenon of delayed elasticity. How- 
ever, as can be shown on the basis of the results in [6], in this case 

3~ldv/dz ~ o. 
Further, Considering that at z > R (where R is the radius of the meniscus, see Fig. I) 

rg So (5) 
X = X o - 7  ~ = x o  S ' 

Eq. (4) can be written as follows: 

a = G ~ S 1/2 
o * V ~ -  ( 6 )  

- - ,  0 ~ = % +  S~/2 
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In deriving Eq. (6), it was assumed that 
d2y r ~  << 1. 
dz2 ( 7 ) 

The solution of Eq. (2), after the substitution of Eq. (6) into it, has the form 

G~ n--1 < S__~__~ -- I1-- o* ~ - ( S  -~/2 /2) 
n S ~ ,, --S7 ~ = ~ g ( z - - R ) .  (8) 

To determine the initial values of stress ~o and stream radius ro at z = R, it is 
necessary to examine the behavior of the liquid in the regions II and III. Region III, as 
shown by the experiments in [6], is not essential to the subsequent analysis. This is be- 
cause the stress in the stream is determined mainly by the weight of the liquid column above 
the free surface (in regions I and II) and, to a lesser degree, by surface tension. As re- 
gards the transitional region II, in a rough approximation it can be characterized by the 
dimensions R and ro (see Fig. i). Assuming that the deformation of the liquid in region II 
is due mainly to its elasticity, we may write the following out of dimensional considerations: 

R=g(q0) 1/3, r o=~(q0) I/3 (9) 

The values of the constants ~ and B can be found empirically by measuring the meniscus, 
as was done in [6J. Here, too, we cite certain geometric considerations, making it possible 
to calculate a and ~ and obtain values close to the empirical values. 

As already noted, the stress ~o at the beginning of region I (i.e., at z = R) is deter- 
mined by the weight of the liquid column in region II and by the force created by surface 
tension. Using an exact expression for the stress from surface tension 

o* [ 1 rr" ] 
P~ : - - _  , f , ~ ) 3 / 2  j 

* r I/1 @ r  '~ (1 -v- 

and taking into consideration the approximate formula 

r (z) ~ .  ro + R - -  V R ~ -  (R - -  z? ,  

describing the meniscus in region II (see Fig. i), it is not difficult to obtain an expres- 
sion for oo: 

Fo 27o~____~ ' 
% - -  ~r~ - - 9 g R m §  R ' 

~==/~'m(~)=~2[+-( i+ .~I ) 2 -g-~ ( ~ )] �9 - I +  

? 

(lO) 

In (i0), the first term on the right side is due to the force of gravity, while the 
second term describes the contribution of surface tension to the total force Fo. 

The quantity Oo, regarded as a function of R (see (i0)), passes through a minimum min 
Go at a certain value of Ro. The corresponding values min Go, Ro, and qo (based on Eq. (9)) 
have the form 

rain% 2V-2pg(sgm?,  Ro ' ~/F2Ys* 1 (2?,~*)3/,2 
9 g m  = ~ 9gmo~ 2 

(ll) 

Since R ~ qX/3 (see (9)), Eq. (i0) gives the relation between the flow rate q and the 
initial tensile (stretching) stress Go. If R < Ro (q < qo), the relation oo(R) (or oo(q)) 
is decreasing. As a result, it is evidently unstable. Thus, the values of Ro and qo deter- 
mined from Eqs. (ii) can be regarded as certain critical values, below which the steady- 
state flow being studied no longer exists. 

Having determined ~o and ro from (9) and (i0) for the case when surface tension in re- 
gion I is insubstantial (pgRm >> 2o*/ro), we can use Eq. (8) to find an expression for the 
stream profile 

37 



TABLE i. Lower Critical Values qo and Ro in Relation to the 
Surface Tension ~* 

~*, Pa �9 cm 6 ,  o 

R~, cm , 0,330 

qo, cm a -sec -1 0,0846 

6,2 

O, 335 

O, 0889 

6,4 

0,341 

0,0932 

6,6  

O, 346 

0,0976 

6,8 

0,351 

O, 1020 

7,0 

O, 356 

O, 1066 

At z >> R, 

r ( C _ ~ _ ~ C - - 1 ) - - I / 2 n  rn__ l 
---- - -  , c =  ~ m .  ( 1 2 )  

TO g n 

Eq. (12), with allowance for (9), can be represented in the form 

--~ . (13) 
T0 

It follows from (12) and (13) that n > i, since only in this case will the stream ra- 
dius decrease slightly with an increase in z. This ensures the existence of long streams, 
f;e., ensures the property of so-called spinability. With a change in flow rate or tempera- 
ture (the effect of which is due to the strong dependence of 8 on T), the corresponding pro- 
files r(z) at z >> R will differ only by constant multipliers dependent on q and 8, as fol- 
lows from (9) and (13). 

At z >> R, the expressions for velocity v and the longitudinal component of the strain- 
rate tensor have the form 

u (z) = Vo (z/cR) 1/n, uo ~ q/~r~, ( 1 4 )  

v Vo (cRzn_l)_l/n.  ( 1 5 )  
nZ /2 

We find from these formulas that v and x are slightly dependent on q (specifically, as 

n--1 
q 3,~ ). Meanwhile, x decreases with an increase in z. 

It follows from (8) that in the case being examined, when 2a----~ ~ << pgRm , the tensile 
stress ~ can be expressed as follows: ro 

(n ) ~ = 9 g  - - z - ~ - R m  c - - 1  . 
n -  1 c ( 1 6 )  

It follows from (9) and (16) that the contribution to ~ of the weight of the liquid column 
ceases to be dependent on the flow rate q as z increases. It should also be noted that the 
ratio D* ='a/x is often used as a measure of "viscosity" in experiments (especially in en- 
gineering trials). Within the framework of our scheme, this ratio has the following form 
at z >> R: 

Vo (n - -  1) ( 1 7 )  

n--1 
Then gqs. (9) and (17) show that ~l*~q a~ and increases without limit with an increase in z. 

All of the properties noted above are in qualitative agreement with the experiments in 
[6], Now let us proceed to a quantitative comparison of the theory with the same experiments, 
using a 0.5% water solution of PEO for this purpose. Here the density of the solution p 
0.i Pa-sec2,cm -2, the surface tension ~* ~ 6-7 Pa,cm, and the relaxation time O z 0.7 sec. 
As was shown in [6], in the region of flow rates for which steady-state flow exists, ~ = 
0.87 and y = ~/B = 2.6. The lower critical values of qo and Ro, calculated in accordance 
with the above data~ are shown in Table I. 

It can be seen that the calculated values of Ro and qo agree well with the empirical 
data: qo = 0.093 cm3-sec -I, Ro = 0.035 cm. In these experiments, it proved impossible to 
stretch a stream of the polymer solution at q < qo (or R < Ro). 
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Fig. 3. Dependence of stress 

F i g ,  4 

(Pa) on longitudinal coordinate z (cm) for 
for q = 0.38 cm3-sec -I, The solid line denotes calculated results; the 
points denote empirical results. 

Fig. 4o Diagram of an open siphon: I, 2, 3) parts of the stream of poly- 
mer solution; 4) wires across which the stream slides; 5, 6) containers 
with polymer solution. 

As concerns the upper critical values q, and R,, in these experiments (q, ~ 1.14 cm 3. 
sec -I, R, = 0| cm), they are evidently connected with the development of instability in re- 
lation to nonaxisymmetric perturbations [6]. 

In accordance with the data presented in [8], the value of the constant n for natural 
cross-linked rubbers is equal ~o 1.64, while n = 1.34 for synthetic cross-linked rubbers. 
The second value of n (n = 1.34) will be used henceforth in our calculations. For conveni- 
ence, numerical values of several of the constants encountered in Eqs. (8)-(17) are pre- 
sented below: 

Iz 

1,34 2,78 0,700 1,43 0,746 

At these values for the constants, inequalities (3) and (7) are satisfied throughout 
the ranges of flow rates and lengths for the polymer streams withdrawn in the experiments. 
It should also be noted that the noninertial asymptote is an average. 

Equation (12), obtained on the assumption that the effect of surface tension could be 
ignored, is valid only when q~0.36 cma.sec -I. In this case, the term (c -- l)/c can be 
ignored already at z = R, and Eq. (13) can be used. At q < 0.36 cm3| -I, calculations 
performed on the basis of Eqs. (6) and (8)-(10) show that Eqs. (12) and (13) also remain 
valid, thanks to the fact that capillary effects on G~ are opposed by the total longitudinal 
force. 

A comparison of the profiles calculated on the basis of Eqs. (12) and (13) with empiri- 
cal profiles [6] for different values of q is shown in Figs. 2 and 3, along with the relation 
o(z) for q = 0.36 cma,sec -I. The experimental values are represented by points, while the 
theoretical results are presented by lines. A similar comparison is sho~cn for the relation 
r(z) in Table 2 at z 924 cm and q = I.i cm3.sec -~. 

The deviation of the theoretical values from the empirical does not exceed 20% for the 
entire set. It should also be noted that all of the theoretical profiles are located above 
the empirical ones. The discrepancy between the theoretical and empirical relations can be 
reduced by changing either oo or n. In the first case, it is necessary to consider the flow 
of the solution under the free surface in region IIIo 

In conclusion, we should note that it might be possible to describe the phenomenon of 
spinability theoretically within the framework of a purely elastic asymptote and without 
the strain orientation hypothesis (i.e., the transition of the liquid to the highly elastic 
state at x > Xcr ) if the stretching time t, is less than the relaxation time e. However, 
as was shown in [6], t, = e in the case of the PEO solution examined here. In connection 
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TABLE 2. Experimental and Theoretical Dependence of Stream 
Radius on the Longitudinal Coordinate at z ~ 24 cm (q ~ i.i 
cm3.sec -~) 

z,  cm 24 28 32 36 40 

r, m~Experimental  0,84 0,78 0,72 0,68 0,65 
/ 

/ 

J Theoreticat  0,79 0,74 0,71 0,68 0,65 

with this, it is worthwhile to remember that in the nonlinear deformation of an elastic 
liquid, the behavior of which was described in [i], theoretical solution of the problem in 
question without allowance for strain orientation leads to an exponential decrease in r(z). 
Thus, at the values of r 0 and oo determined from Eqs. (9) and (i0), the length of the 
stretched stream will not exceed 0.i cm. At this length, the stream radius will be about 
two orders less than ro. This circumstance evidently explains the impossibility of using 
the above method to withdraw a stream of a transformer oil solution of butyl rubber. Good 
results were obtained in [9] in a rheological description of such a stream in simple shear 
on the basis of [i], without allowance for strain orientation. 

Phenomenon of Open Siphoning. Finally, let us examine an open siphon scheme (Fig. 4) 
where a stream of solution 1 of length Lz, passing over two wires 4 and having a horizontal 
section 2, is stretched by the weight of a liquid column 3 of length L2. The open siphon 
problem has a steady-state solution if it is possible to maintain the level of the liquid 
in vessels 5 and 6 at a constant level. We will use the results in the preceding section 
to construct such a solution. If the length of both streams is reckoned from the levels of 
their free surfaces, then at a given flow rate q determined by the initial conditions, both 
streams will have identical profiles at a length equal to LI. This result follows at once 
from Eqs. (5) and (8) and the above-noted dimensional considerations. Here the length L2 
is determined by the relation 

rrt 2 (L1) o (L1) -b Ffr = r~r z (L.z) c~ (Le), 

where the value of LI is assigned and the functions r(z) and o(z) are determined by Eqs. 
(15) and (18) [sic]. If stream friction against the wire Ffr = 0, then L2 : L:. It is 
interesting to note that, as follows from the analysis, in the case of an open siphon the 
polymer stream 3, flowing downward, expands as its descends. Such behavior can be described 
only on the basis of a rheological equation valid for rubbers. In the case of absence of 
the elastic siphon phenomenon, a stream of a viscoelastic liquid usually contracts as it 
falls. 

The results obtained indicate that in certain cases the rheological behavior of liquid 
polYmer streams can be described within the framework of a purely elastic asymptote. How- 
ever, the range of applicability of this approach is sharply limited. For example, this 
approach is useless for examining the stretching of a stream vertically downward, as was 
confirmed by the results obtained above. The approach also proves fruitless in the case of 
a viscoelastic stream stretched in the horizontal direction, when the forces of gravity are 
insignificant. Actually, in the latter case, simple calculations within the framework of 
a "stream" approximation lead to the following results: In the case of a purely elastic 
stream, nonuniform steady stretching is impossible; with allowance for delay phenomena, 
stable, steady, nonuniform stretching is possible, but only if the parameter n in the sim- 
plified BST potential satisfies the inequality n < i. However, as shown above, this inequal- 
ity is incompatible with the possibility of stretching long streams in accordance with the 
scheme in Fig. i. 

NOTATION 

and e, maximum Newtonian viscosity and relaxation time; r, stream radius; z, coordi- 
nate reckoned along stream; S, area of stream cross section perpendicular to z,axis; v and 
o, longitudinal velocity and stress, averaged over the stream cross section; o , surface 
tension; p, density; g, acceleration due to gravity; X, elastic strain tensor; ~, unit ten- 
sor; Xrr = x, x ~ and Xzz, components of the tensor X in tension in a cylindrical coordinate 
system; Xcr, critical strain, at which the solution begins to harden; ~, modulus of elasti- 
city; W, elastic potential; n, constant; nz retardation viscosity; xo, oo, ro, So, elastic 
strain, stress, radius, and cross-sectional area at z = R; R, radius of meniscus; G~, effec- 
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tive modulus; a, B, Y, constants characterizing the meniscus; ~, strain rate; ~* = o/~; 
c, m, constants; T, temperature; t*, time of passage of a fixed section from z = R to the 
drum; LI and Lu, lengths of the stream being stretched and the falling stream; Ffr, fric- 
tion; q, flow rate. 

i. 

2. 

3. 

4. 

. 

6. 

7. 

8. 
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THE SPREADING OF A NON-NEWTONIAN LIQUID OVER A HORIZONTAL 

PLANE WITH INTENSIVE HEAT-TRANSFER AND MASS-TRANSFER 

PROCESSES ON THE SURFACE OF THE LAYER 

B. M. Khusid UDC 532.135 

We investigate the flow of a layer of highly viscous non-Newtonian liquid over a 
horizontal plane, accompanied by intensive heat-transfer and mass-transfer pro- 
cesses. 

We consider the behavior of a layer of viscoelastic liquid with a free surface on a 
solid horizontal plane. The coordinate system is so chosen that the axes OX and OY lie in 
this plane and the axis OZ is directed upward. In what follows, we shall consider the be- 
havior of large liquid masses, and therefore we shall disregard capillary forces. For a 
highly viscous liquid the hydrodynamic problem is simplified. In the first place, the Rey- 
nolds numbers are small and the inertial terms may be neglected in the equations of motion. 
In the second place, the characteristic time scale of the flow is much longer than the re- 
laxation time of the liquid (small Debora numbers), and the rheological equations of a non- 
linearly viscoelastic liquid reduce to the rheological differential equation [i, 2] that is 
valid for slow flows: 

T = ~]AI -~ lJA1 ~- vA2. 

Here T is the excess-stress tensor; A1 DC~ (~) I ; A2 = 
Dz J~=t 

D2Ct (~c) 
DTz 

(i) 

l~=t Rivlin--Eriksen tensors 

[i, 2]; Ct(T), Cauchy deformation tensor [i, 2]; coefficients n, ~, ~ depend on the second 
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